

GRDC EEF project early learnings

Prof Helen Suter, Dr Arjun Pandey, Prof Mike Bell and Dr Weijin Wang

Enhanced efficiency nitrogen fertilisers in the grains industry: an opportunity to reduce GHG emissions and increase NUE (2024-2028) (UOM2404-007RTX)

Project aims

- Understand the role of Enhanced Efficiency Fertiliser (EEF) technologies within the Australian grains industry to;
 - Maximise Nitrogen Use Efficiency (NUE)
 - Optimise crop production
 - Reduce environmental impacts (e.g., Greenhouse Gas Emissions (N₂O)) from N fertiliser use
 - Provide growers with knowledge to help with decision making for their conditions
 - Ensure growers are prepared for pressure from markets, consumers and government to reduce GHG and other environmental footprints

GRDC EEF TRIALS

FIELD TRIALS

Agronomic N trials (2-3 years)

- EEFs compared with Urea
- Placement and timing

Fate of applied fertiliser N

- 2-3 years using ¹⁵N labelled urea and EEFs
- Plant and soil

N₂O emissions

2 years (Dookie, Tamworth and Gatton)

Dookie Campus trial site

MECHANISTIC STUDIES

• Soil-fertiliser-climate interactions; N₂O:N₂ emissions

ECONOMIC MODELLING

EEF OUTCOMES MODELS AND PROJECTIONS

Environmental impacts from Nitrogen

Fig. 1. Published N_2O emissions data by agricultural sector. 51.4 % of emissions are from the crop sector (blue), 34.5 % from livestock (orange), 10.8 % from horticulture (green), and 3.4 % do not have a specified source (yellow). A&F = abattoirs and feedlots; N/S = not stated.

N₂O impact

- "urgent action on N₂O is critical to achieving climate goals, and without a serious reduction in emissions, there is no viable path to limiting warming to 1.5°C in the context of sustainable development."
- "currently the most significant ozone-layer depleting substance being emitted into the atmosphere."
- "A sustainable nitrogen management approach not only reduces nitrous oxide emissions but also prevents the release of other harmful nitrogen compounds,.."

Reduce N inputs

Modified from Antille and Murphy, 2021, Environmental and Sustainability indicators

Five fertiliser products were tested

- Urea
- Nitrification inhibitor
- Urease inhibitor
- CRF-Polymer coated
- Dual inhibitor

Experiment 1 (N response)

- \rightarrow 4 × N rates % of optimum (+ 0N and Y_{max})
 - 25
 - 50
 - 75
 - 100

$$Y_{\text{max}} = 150$$

Experiment 2 (Placement × Timing)

- > One N rate at 75% of the optimum
 - 2 × placement (surface and deep)
 - 2 × timing (sowing and GS30)

Experiment 3 (15N recovery)

- One N rate at 75% of the optimum
 - ¹⁵N (at 10 atom% ¹⁵N enrichment)

Measurements

Response, yield and quality

- NDVI
- Maturity biomass cut
- Machine harvest
- Plant N and grain protein

Fate of fertiliser N

- In-season ¹⁵N in mineral N
- End of season soil mineral N
- End of season ¹⁵N in soil and plants

2024 Growing season Rain – Dookie

Measurements: Experiment 1 (N response)

Yield (t/ha)

 No significant yield response to N rates (LSD = 0.7)

Measurements: Experiment 1 (N response)

N uptake in grains and grain protein %

Measurements: Experiment 2 (Placement × Timing)

- Yield (t/ha)
- Grain protein (%)

No significant yield response to the placement and timing of N products (LSD = 0.7)

Measurements: Experiment 3 (15N recovery, N applied @75kg/ha))

End of season ¹⁵N in soil and plants

Product type	Proportion of fert-N in plant (Ndff%)	Recovery of fert-N in grain (%)	Recovery of fert-N in straw (%)	Total recovery of fert-N in plant (%)
Urea	20±4	22±5	1.1±0.4	23±4
Urease inhibitor	25±3	22±1	1.1±0.3	23±2
Nitrification inhibitor	22±3	19±1	1.4±0.3	20±2
Dual inhibitor	27±3	23±3	1.4±0.4	24±4

➤ Partial soil analysis for ¹⁵N recovery is showing >70% total fertiliser N recovery in plant and soil (most likely >80% in EEFs)

Summary- 2024 season experiment Dookie

- ➤ No significant yield response to N input due to dry growing season
- No yield or grain quality advantage from any of the EEF types
- Placement or timing of EEF application did not provide yield advantage
- Compared to urea, significantly higher proportion of the total plant N came from EEFs.

Five fertiliser products were tested

- Urea
- Nitrification inhibitor
- Urease inhibitor
- CRF-Polymer coated
- Dual inhibitor

- Experiment 1 (N response)
- Experiment 2 (Placement × Timing)
- Experiment 3 (¹⁵N recovery)
- \triangleright N₂O emissions
- ➤ NH₃ volatilisation

Thanks to Dr David Riches

Treatments at Gatton site - Summer Crop Sorghum

$\mathbf{5} \times \mathbf{fertiliser}$ products

- Urea
- Nitrification inhibitor
- Urease inhibitor
- CRF-Polymer coated
- Dual inhibitor

2 × Application methods

- Surface broadcast
- Subsurface banded

 $4 \times N$ rates (plus 0N and Y_{max})

- 25
- 50
- 75
- 100

2 × N isotopes

- 14N
- ¹⁵N (at 10%)

Thanks to Prof Mike Bell, UQ

Canopy development retarded for N rates <50 kg N/ha, irrespective of product

Overall N response

Drone imagery and data provided by:

Grain yield N rate responses for N urea and EEF products, either banded or broadcast

- Sorghum yield in 2024/25 season was below average due to very wet, overcast growing season
- Yields generally low, but N responses maximised at N rates of 50-75 kg N/ha

Product comparison for grain yield

No significant effects of product or application method. All yields low in very wet season

Summary - Gatton Experiment

- A disappointing season due to extremely wet conditions for >2 months
- N accumulation responded to N rate but not product and was generally low for summer sorghum (Waterlogging, low radiation?)
- No apparent differences between urea and EEF products, regardless of application strategy
- Crop N balance and residual fertiliser N in the soil at harvest from ¹⁵N plots will be informative

Mechanistic study

Thanks to Principal Scientist Dr. Weijin Wang

Mechanistic study

NH₃volatilisation

Mechanistic study

Cumulative N₂O emissions

Summary - Mechanistic study

- \triangleright Nitrification inhibitor maintained highest level of NH₄⁺ and the lowest level of NO₃⁻.
- ➤ Urease inhibitor reduced NH₃ loss compared to surface applied urea but deep placement of urea (~5cm) performed better.
- ➤ Nitrification inhibitor, dual inhibitor and CRF reduced N₂O emissions.

Contacts:

Prof. Helen Suter, helencs@unimelb.edu.au; 0438 456 602 Dr Arjun Pandey, arjun.pandey@unimelb.edu.au; 0458810668 GRDC

